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ABSTRACT

A new method for identifying the location of finite element model errors given test-identified
frequencies and mode shape data is presented. The new method builds on the concept of the
modal force error vector, which is the undamped impedance of the given finite element model
at each identified frequency multiplied by the corresponding identified mode shape. In order to
mitigate the problems associated with reducing analytical models to the set of measurement de-
grees of freedom, a mode shape projection algorithm is utilized. The projection algorithm is a
linear least-squares method which can be controlled to minimize bias caused by model errors.
The localization indicator is then defined by the modal force error and a degree of freedom-de-
pendent normalization based on the variance of the identified frequencies and mode shapes. The
performance of the method in localizing structural damage is examined using experimental data.

INTRODUCTION

The development of accurate predictive analytical models for structural dynamics traditionally
involves the problem of model reconciliation to dynamic testing. This is because, despite ad-
vancements in finite element theory, model construction (e.g. meshing algorithms), visualization
and high performance computing, there are still significant modeling errors introduced by as-
sumptions of uniform material behavior, joint compliance, element formulations, etc. In order
to address the reconciliation of analytical models to dynamic testing, efficient testing methods
and algorithms have been developed to adjust model parameters to “fit” the test identified modal
parameters. These algorithms can be interpreted as optimization methods; that is, an objective
is minimized or maximized with respect to a set of variable parameters.

When the model being adjusted has the correct mathematical form, but inaccurate parameters,
parameter estimation algorithms yield excellent results, with the following caveats. First, there
must be a sufficient number of test-identified parameters upon which a least-squares estimate of
the parameters can be based. Second, the parameters which are in error must be among those
being estimated. Finally, the parameters being varied must be as independent as possible in terms
of their sensitivity to the data. Unfortunately, these requirements are at odds with one another.
For example, if all primary model parameters are allowed to vary, there will not be a sufficient



number of test-identified parameters available to obtain a least-squares estimate. Furthermore,
there will likely be a high degree of correlation between the parameters, further limiting the con-
fidence in the estimate. Therefore, we are usually limited to the variation of a few key model
parameters to account for the observable errors. The process of selecting these parameters can
be termedmodel error localization. In this context, the problem of updating models is a two-
stage iterative approach. The first stage islocalization or selection of model parameters to be
estimated; the second stage is theestimation of those parameters to optimize a particular metric.

Similarly, in detecting damage in structures using dynamic response data, these two tasks are
generally described as finding thelocation andextent of the damage. Damage detection usually
involves determining location and extent indicators for a structure relative to some baseline con-
dition of the structure, represented either by a previous set of dynamic response data or by the
response parameters of an analytical model of the structure which is assumed to be accurate and
reflects a particular condition of health. Using damage localization, problem areas can be iden-
tified in order to direct more detailed structural inspections. Similarly, in adaptive structures tech-
nology, damage or error localization indicators can be used to monitor adaptive structural
systems for health or to identify sensor systems which are no longer functioning properly.

In this paper, a new method for identifying the location of finite element model errors, or equiv-
alently damage, given test-identified frequencies and mode shape data is presented. The present
model error localization approach is based on the Sensitivity-Based Element-By-Element (SB-
EBE) model update theory (Farhat and Hemez, 1993). This algorithm determines parameter es-
timates by a minimization of modal force errors for a set of modes. The modal force error vector
is the undamped impedance of the given finite element model at each identified frequency mul-
tiplied by the corresponding identified mode shape. The minimization leads to both a mode shape
projection algorithm and physical model parameter update using the projected mode shapes plus
the experimental frequencies and the nominal stiffness and mass matrices of the analytical model.

A key component of this model update procedure is the so-called “zooming” feature, whereby
a small number of potential model parameters are chosen for updating based upon the degrees
of freedom (d.o.f.) exhibiting the largest modal force errors, and the parameters which are lo-
calized to those degrees of freedom. Clearly, the “zooming” feature is an example of model error
localization for finite element updating. Kaouk and Zimmerman use a similar approach in de-
fining a “damage vector,” which is again the modal force error generalized to utilize the damped
modal parameters (Kaouk and Zimmerman, 1994). This common concept of using the modal
force error vector for localization was proposed in earlier work (Ojalvo and Pilon, 1988).

The present technique builds on the same concept of the modal force error, but introduces ad-
ditional algorithmic components to increase robustness of the localization in the presence of
model errors, differences in localized stiffness, and uncertainty in the identified parameters. In
order to compute the modal force error with respect to the d.o.f. of the model, a mode shape pro-
jection algorithm is utilized. The projection is formulated as a least-squares problem using the
model and the equations of motion at the identified frequency to solve for the displacements at
the unmeasured d.o.f. A key component of the present technique, however, is control of the errors
introduced by the projection algorithm. This is accomplished by partitioning out rows of the an-
alytical model matrices associated with the largest modal force errors. An alternative approach
investigated is the use of a normalization of the functional underlying the projection algorithm.

The model error localization indicator is then defined by the modal force error vector and a
d.o.f.-dependent normalization based on the variance of the identified modal parameters. This
normalization is critical to understanding the localization effects caused by random errors in the
identification process and the relative dynamic stiffness of the model. That is, areas of the model



at which forces tend to localize due to sensitivity in the model formulation itself will be normal-
ized so that they do not mask errors in less sensitive locations. This normalization allows for
statistical confidence in the identified modal properties to be incorporated into the localization
analysis, such that model parameters sensitive to the most uncertain test parameters will be de-
emphasized. Finally, this paper investigates the trade-off between dynamic model reduction and
mode shape projection within the context of model error localization. This is an important con-
sideration as traditional approaches have considered only a choice between these techniques,
rather than a judicious combination to minimize the ambiguity of the results.

The remainder of the paper is organized as follows. The general theory for error localization
via computation of the modal force error is first presented, followed by details of the projection
algorithm and techniques for controlling bias due to localized model errors. The present error
localization indicator is then defined using a statistical normalization of the modal force error.
The variance of common model correlation measures such as the Modal Assurance Criteria are
also examined, so that the variance measures for the indicator normalization can be properly in-
terpreted. Finally, the performance of the present method is examined using experimental data.

THEORETICAL DEVELOPMENT

We define the modal force error vector  for modei as

(1)

where  and  are the stiffness and mass matrices from the model, respectively,  is the
identified radial frequency for mode  (rad/s),  is the identified mode shape at the sensor
d.o.f., and  is the partition of the mode shape corresponding to the unmeasured d.o.f. in the
model. If the correct stiffness and mass matrices are given as

(2)

we have

(3)

Thus, the modal force error vector  contains information on both magnitude and location of
the model errors .

Unfortunately, the d.o.f. at which the mode shape is sampled in test is typically much smaller
than the number of d.o.f. in the finite element model which defines  and . Therefore, to apply
Eqn. 1, either the model must be reduced to the measured d.o.f., or the measured portion of the
mode shapes must be expanded to the displacement d.o.f. basis of the model.
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PROJECTION OF EXPERIMENTAL MODE SHAPES

There have been many algorithms proposed for expanding experimental mode shapes into the
d.o.f. of a finite element model (see Imregun and Ewins, 1993, for reviews of various techniques).
The algorithm presented in this paper is based on the Sensitivity-Based Element-By-Element
(SB-EBE) model update theory (Farhat and Hemez, 1993), which incorporates a mode shape
projection theory based on a minimization of the modal force error given in Eqn. 1.

PROJECTION ALGORITHM

We seek a estimate of the unmeasured partition of the mode shape  which minimizes the
magnitude of the impedance residual, viz.

(4)

where  is the impedance of the model for experimental modei. This leads to
the following least-squares solution for :

(5)

where  is the mode shape projection for mode .
It is known, however, that when the model is in error,  should be nonzero even when

is correctly determined; in fact,  should hopefully have a small number of (possibly) large
nonzero entries. We can partition Eqn. 1 as

(6)

whereA andB refer to a partitioning of the equations into the highest and lowest magnitudes of
the entries of . Then, a least-squares estimate for  is given by

(7)

so long as the number ofB equations is greater than the number of unmeasured d.o.f. inZ. The
choice of the equation setB upon which the least-squares solution is defined is not trivial. The
primary motivation for partitioning the equations is to improve the solution for  over that ob-
tained using the full set of equations, given the assumption that the errors in the model are not
distributed uniformly among the d.o.f. but rather are localized. It should be noted that delegating
the equilibrium equation for a particular d.o.f. to setA does not impede our ability to find model
errors associated with that d.o.f. Indeed, it will tend to enhance the modal force error at those
d.o.f. in setA since the projection matrix will not be “designed” to minimize those errors.

A generalization of the above partitioning can be obtained by introducing a weighting function
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to the optimization given by Eqn. 4. In the spirit of statistical estimation, we can select an inverse
weighting by the variance of the modal force error . This variance reflects the uncertainty of
the modal force error as a linear function of the errors in the identified modal parameters used
to compute . If we define the covariance matrix of  as , and the covariance matrix of
the measured mode shape  as , then

(8)

Using Eqn. 8 and Eqns. 4 and 5, we obtain

(9)

Note that a nonlinearity has been introduced, because the modal force error covariance matrix
 is a function of the projection matrix . This can be handled in a cursory manner by pre-

dicting  based on only the measured partition of , computing an estimate of , correcting
, and finally computing a new projection  based on the corrected covariance matrix.

MODEL REDUCTION

An alternative to the mode shape projection algorithm detailed above is to condense the model
d.o.f. down to the set of measured d.o.f. There are a number of established techniques for model
reduction, such as Guyan reduction (Guyan, 1965) and the Improved Reduced System (IRS)
model (O’Callahan, 1989). The difficult trade-off in model reduction, given that the set of re-
duced d.o.f. are given as a consequence of the experiment design, is between the accuracy of the
reduction and the sensitivity of the transformation to model errors.

A reasonable compromise is to reduce the model to the measurement d.o.f., assess the accuracy
of the reduced model in terms of its ability to predict the modal parameters of the full-order mod-
el, and then add a minimum number of additional d.o.f. to the reduction in order to ensure that
the reduced model predicts the analytical modes to within the uncertainty of the experimental
parameters. The best choices of additional d.o.f. are either other displacements which would be
useful in localizing model errors, or generalized d.o.f. such as the fixed interface modes (FIM)
of the Craig-Bampton component mode synthesis technique (Craig and Bampton, 1968).

COMPUTATION OF THE LOCATION INDICATOR FOR MODEL ERROR

The computation of the impedance residual can now be written as

(10)

and an estimate of the variance of the entries in  due to assumed zero-mean gaussian noise
on each of the entries of  is given by

(11)

where the noise covariance matrix for the elements of the measured mode shape  is given by
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. In addition, we can consider additional variance due to uncorrelated frequency uncertainty,
although the frequency uncertainty is typically smaller than the mode shape uncertainty, relative
to their nominal values. It can be reasonably expected (subject to the noise models assumed
above and knowledge of the modal parameter variances) that an accurate analytical model will
have impedance residuals .

We define the indicator as the impedance residual estimate vector  normalized by the stan-
dard deviations of the estimates ,

(12)

Therefore,  can be viewed as a normalized modal force error vector, which indicates degree
to which the estimated modal force error from the actual modal data exceeds the normal level
of force error due to uncertainty in the modal parameters.

MODAL PARAMETER VARIANCE BASED ON RECONCILIATION CRITERIA

Since we have accepted standards for model update convergence (e.g. level of Modal Assur-
ance Criteria, error in frequency estimates), these can be used to determine the modal variances
which in turn are used to arrive at the Model Error Localization Indicator .

We can determine the variance of the mode shape error  by determining the expected value
of the Modal Assurance Criteria (MAC) as a function of . The MAC is defined as

(13)

Now assume that the two mode shapes are identical, except for added noise to . It can be
shown that, if the noise is random and of equal magnitude across the measured d.o.f. such that
the covariance matrix of the mode shape is  and the dimension of  is , then

(14)

This relation can then be used in reverse, by supposing the expected value of the MAC given an
ensemble of tests, each of which yields an estimate of the mode shapes. For example, if we as-
sume the expected value of the MAC is 0.99, then

(15)

EXPERIMENTAL RESULTS: INTERSTATE 40 RIO GRANDE BRIDGE

The model error localization algorithm detailed in the present paper has been implemented
and checked on numerical data. Due to space considerations, those results will not be given here.
Instead, the results below detail the application of the algorithm to damage detection of a highway
bridge. The bridge in question is one span of Interstate 40 over the Rio Grande in Albuquerque,
New Mexico. As part of a research effort by Los Alamos National Laboratory and New Mexico

Σφ

Ri 3σ Ri( )<
Ri

σ Ri( )

R̂i j( )
Ri j( )

σ Ri j( )( )
-------------------= σ Ri j( )( ) Zi j :,( )PiΣφPi

TZi j :,( )
T

=

R̂i

R̂i
Σφ
Σφ

MAC φi φ j,( )
φi

Tφ j( )
2

φi
Tφi( ) φ j

Tφ j( )
--------------------------------=

φ j

Σφ σn i( )
2 I= φ Nm

E MAC[ ] 1
Nm 1–( )σn i( )

2

φTφ
---------------------------------–≈

σn i( )
2 0.01φTφ

Nm 1–
--------------------= Σφ

0.01φTφ
Nm 1–
--------------------

 
 
 

I= σ Ri( )⇒ ⇒ 0.01φTφ
Nm 1–
--------------------

 
 
 

diag ZiPiPi
TZi

T
( )=



State University, with the support of Sandia National Laboratories, an older section of the bridge,
slated for destruction, was instrumented and modal tests performed while one of the supporting
beams of the roadbed was intentionally damaged. A total of 5 modal tests were performed, with
the bridge in its “pre-damage” condition and at progressively stages of damage. In each test, the
first 6 modes of the bridge were identified using 26 accelerometers equally spaced on the roadbed
above the two I-beams which provide the longitudinal bending support.

The corresponding modes of a finite element model of the bridge are shown in Figure 1. This
model, composed of beam and plate elements, has 2027 displacement degrees of freedom. Be-
cause the number of model d.o.f. exceeds the test measured d.o.f. by almost two orders of mag-
nitude, a significant amount of model reduction and/or mode shape projection is necessary to
compute an error indicator. In this case, model reduction alone will not suffice. This can be seen
in Table I. Here the modes of two reduced-order models are compared to the full-order model.
The Guyan-reduced model, which includes just the 26 measured d.o.f., exhibits considerable er-
rors, to the point where some modes of the full-order model are not present in the reduced model.
A second model, using a Craig-Bampton d.o.f. basis comprised of the 26 measured d.o.f. aug-
mented by 50 fixed-interface modal displacements (modes of the full-order model with the mea-
sured d.o.f. fixed-to-ground), is sufficient to capture the lower modes of the full-order model.
To utilize this model, however, mode shape projection must be employed, to determine the dis-
placements of the experimental modes for the unmeasured fixed interface d.o.f.

Figure 1: I-40 Rio Grande Bridge: Finite Element Modes

The results of the mode shape projection analysis for the undamaged modal test vectors is giv-
en in Table II. These tables compare and contrast the basic mode shape projection and the gen-
eralized weighted least-squares projection proposed in a preceding section of this paper. These
results are determined for both the full-order model (i.e. projecting the 26 sensor d.of. to the 2027
model d.o.f.) and for the reduced-order Craig-Bampton (C-B) model using the 50 fixed interface

 1  2  3

 4  5  6

 1  2  3

 4  5  6

X

YZ

 1  2  3

 4  5  6

 1  2  3

 4  5  6

I-40 BRIDGE

  MODE NUMBER =     1       FREQUENCY = 2.3841197E+00

 1  2  3

 4  5  6

 1  2  3

 4  5  6

X

YZ

 1  2  3

 4  5  6

 1  2  3

 4  5  6

X

YZ

 1  2  3

 4  5  6

 1  2  3

 4  5  6

I-40 BRIDGE

  MODE NUMBER =     2       FREQUENCY = 2.9137616E+00

 1  2  3

 4  5  6

 1  2  3

 4  5  6

X

YZ

 1  2  3

 4  5  6

 1  2  3

 4  5  6

I-40 BRIDGE

  MODE NUMBER =     4       FREQUENCY = 3.5231595E+00

 1  2  3

 4  5  6

 1  2  3

 4  5  6

X

YZ

 1  2  3

 4  5  6

 1  2  3

 4  5  6

I-40 BRIDGE

  MODE NUMBER =     3       FREQUENCY = 3.4834101E+00

 1  2  3

 4  5  6

 1  2  3

 4  5  6

X

YZ

 1  2  3

 4  5  6

 1  2  3

 4  5  6

I-40 BRIDGE

  MODE NUMBER =     5       FREQUENCY = 3.9101043E+00

 1  2  3

 4  5  6

 1  2  3

 4  5  6

X

YZ

 1  2  3

 4  5  6

 1  2  3

 4  5  6

I-40 BRIDGE

  MODE NUMBER =     8       FREQUENCY = 4.4215627E+00



modal displacements (i.e. projecting the 26 sensor d.o.f. to 76 total model d.o.f.). One problem
in evaluating the projections using experimental data is that we do not know the correct responses
for the unmeasured d.o.f. One method of evaluation, however, is to compare the MAC between
the projected experimental mode shape and model mode shape to the MAC determined by just
the measured portions of the two mode shapes. It can be supposed that, if the measured d.o.f. of
the model are a reasonable sample of the full mode shape, then the MAC determined by the mea-
sured partition will be representative of the MAC between the full mode shapes. Based on this
supposition, we can make the following observations.

First, note that the weighted projection is crucial in determining projected mode shapes which
are reasonable with respect to the analytical mode shapes. Furthermore, the mode shapes pro-
jected into the d.o.f. of the C-B model are more reliable than the projection into the full-order
finite element model. This can be seen particularly with the undamaged vector case. Here the
MAC between the measured partition of the model’s modes and the test modes are quite high,
indicating that the model can accurately predict the experimental mode shapes, at least from the
point of view of the measured d.o.f. The projected mode shapes for the full-order model, how-

TABLE I:  COMPARISON OF MODEL MODES FOR TWO LEVELS OF MODEL REDUCTION

Full-Order
Model

Guyan Reduction to Sensor d.o.f. C-B Model to Sensor d.o.f. + 50 FIM

Mode
 #

Freq
(Hz)

Mode
#

Freq
(Hz)

%
Freq
Error

MAC
Mode

#
Freq
(Hz)

%
Freq
Error

MAC

1 2.384 1 2.419 1.46 1.0000 1 2.384 0.01 1.0000

2 2.914 2 2.980 2.28 1.0000 2 2.918 0.16 1.0000

3 3.483 5 4.499 29.14 0.9848 3 3.483 0.00 1.0000

4 3.523 3 3.680 4.45 1.0000 4 3.523 0.02 1.0000

5 3.910 4 4.118 5.31 1.0000 5 3.919 0.23 1.0000

6 4.046 3 3.680 -9.06 0.9993 6 4.046 0.00 1.0000

7 4.358 5 4.499 3.23 1.0000 7 4.359 0.03 1.0000

8 4.422 6 4.812 8.83 0.9999 8 4.433 0.26 1.0000

9 5.077 1 2.419 -52.36 0.9283 9 5.077 0.00 1.0000

10 5.504 6 4.812 -12.57 0.9132 10 5.504 0.01 1.0000

TABLE II:  MAC: MODEL VS. PROJECTION OF UNDAMAGED VECTORS

Mode #
Measured

MAC

Full-Order Model n=2027 C-B Model (n=67)

Basic
Projection

Weighted
Projection

Basic
Projection

Weighted
Projection

1 0.9974 0.0002 0.8454 0.0001 0.9975

2 0.9928 0.0141 0.9146 0.0314 0.9931

3 0.9933 0.0101 0.7415 0.0315 0.9942

4 0.9778 0.0190 0.0665 0.2887 0.0806

5 0.9855 0.0185 0.9842 0.0165 0.9756

6 0.9823 0.0536 0.9882 0.0158 0.9853



ever, have significantly lower modal assurance criteria, which would be indicative of either sig-
nificant modeling error or significant error in the experimental mode shape. The C-B model, on
the other hand, retains the higher MAC of the measured partitions. Since both models are equiv-
alent in terms of their ability to predict these modes (as was seen in Table I) it is reasonable to
attribute these differences to our ability to project the mode shapes into these different displace-
ment sets. Finally, note that the project of mode 4 for all of the models is significantly in error.
The cause of these errors is not evident in either the data or the model, but it is likely these is
some model form error which is not observable from the measured d.o.f.

The results of the model error localization are shown in Figures 2 through 4. In Figure 2, a
comparison of the modal force error vector and the error indicator, which is the force vector nor-
malized by its standard deviation, is shown for the undamaged and full damage cases for mode
1. The measured d.o.f. showing large force errors for both cases are at sensors 1 and 14, which
are at the supported ends of the bridge and far away from the actual damage. The error indicator,
on the other hand, shows that none of the d.o.f. have a significant level of error in the undamaged
condition, while in the damaged condition many d.of. exhibit indications of damage. In fact, d.o.f.
20, associated with sensor 20, shows the highest error indicator and is directly above the location
on the support beam where the structural damage was introduced. Figure 3 shows a composite
error indicator (root-sum-square of the 6 modess) for the undamaged condition and for damage
cases 2 through 4. Note again the clear error indicator associated with d.o.f. 20 in damage case
4. Also, there is a consistent indicator of damage or model error associated with d.o.f. 10-12 for
all of the cases. This is associated with the undamaged support beam and is not in the same area
of the bridge as the damage. Finally, Figure 4 shows the composite model error indicator for the
4 damage cases divided by the pre-damage error indicator. This gives the best indicator for the
damage, and shows that the damage is not detectable in any of the prior partial damage conditions.

Figure 2: Comparison of Modal Force and Indicator: Results for Mode 1
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Figure 3: Composite Error Indicator

Figure 4: Damage Indicator: Ratio of Error Indicators for Damage Levels
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CONCLUSIONS

A method for localizing modeling errors using experimental modal parameters has been pre-
sented. The method is robust in the sense that it incorporates the variance of the experimental
data used in the localization indicator, and can find errors which would otherwise be masked by
stiff areas of the structure. The method can utilize a mix of model reduction and mode shape
projection, and a new mode shape projection algorithm is derived which also incorporates sta-
tistical measures to reduce bias caused by imperfect experimental data. The method has been
successfully applied to damage detection in a highway bridge and is currently being implemented
for use as a pre-processor in test-analysis model reconciliation.
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